博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
二维前缀和
阅读量:6942 次
发布时间:2019-06-27

本文共 3755 字,大约阅读时间需要 12 分钟。

一维前缀和 :

  这个优化 , 可以在 O (1) 的时间内计算出一个序列的和 ,

 

二维前缀和 :

  对于一个矩阵 , 也可以在 O (1) 的时间内计算出矩阵 (x1~x2)( y1 ~ y2 ) 的和 。

  sum[ i ] [ j ] 表示矩阵 1 ~ i , 1 ~ j 的和 , 那么由容斥原理知 sum[ 0 ] [ j ] 和 sum [ i ] [ 0 ] 均为 0 。

  则  s[ x1 ~ x2 ] [ y1 ~ y2 ] = sum[ x2 , y2 ] + sum [ x1 - 1 ] [ y1 - 1 ] - sum [ x1 - 1 ][ y2 ] - sum [ x2 ] [ y1-1 ] 。

 

The Cartesian coordinate system is set in the sky. There you can see n stars, the i-th has coordinates (xi, yi), a maximum brightness c, equal for all stars, and an initial brightness si (0 ≤ si ≤ c).

Over time the stars twinkle. At moment 0 the i-th star has brightness si. Let at moment t some star has brightness x. Then at moment (t + 1) this star will have brightness x + 1, if x + 1 ≤ c, and 0, otherwise.

You want to look at the sky q times. In the i-th time you will look at the moment ti and you will see a rectangle with sides parallel to the coordinate axes, the lower left corner has coordinates (x1i, y1i) and the upper right — (x2i, y2i). For each view, you want to know the total brightness of the stars lying in the viewed rectangle.

A star lies in a rectangle if it lies on its border or lies strictly inside it.

Input

The first line contains three integers n, q, c (1 ≤ n, q ≤ 105, 1 ≤ c ≤ 10) — the number of the stars, the number of the views and the maximum brightness of the stars.

The next n lines contain the stars description. The i-th from these lines contains three integers xi, yi, si (1 ≤ xi, yi ≤ 100, 0 ≤ si ≤ c ≤ 10) — the coordinates of i-th star and its initial brightness.

The next q lines contain the views description. The i-th from these lines contains five integers ti, x1i, y1i, x2i, y2i (0 ≤ ti ≤ 109, 1 ≤ x1i < x2i ≤ 100, 1 ≤ y1i < y2i ≤ 100) — the moment of the i-th view and the coordinates of the viewed rectangle.

Output

For each view print the total brightness of the viewed stars.

Example
Input
2 3 3 1 1 1 3 2 0 2 1 1 2 2 0 2 1 4 5 5 1 1 5 5
Output
3 0 3
Input
3 4 5 1 1 2 2 3 0 3 3 1 0 1 1 100 100 1 2 2 4 4 2 2 1 4 7 1 50 50 51 51
Output
3 3 5 0
Note

Let's consider the first example.

At the first view, you can see only the first star. At moment 2 its brightness is 3, so the answer is 3.

At the second view, you can see only the second star. At moment 0 its brightness is 0, so the answer is 0.

At the third view, you can see both stars. At moment 5 brightness of the first is 2, and brightness of the second is 1, so the answer is 3.

 

如果这题是遍历 所有的点 , 那么一定会超时 , 由于灯亮度变化范围较小 , 可以借助二维前缀和 , 将一定范围内不同亮度的灯全部合并到一起 , 最后对于 每次询问 ,只需要遍历所有的亮度即可 。

 

代码示例 :

 

/* * Author:  renyi  * Created Time:  2017/8/29 9:23:49 * File Name:  */#include 
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;const int maxint = -1u>>1;#define Max(a,b) a>b?a:b#define Min(a,b) a>b?b:a#define ll long longint dp[105][105][15] ;int main() { int n , q , c ; int x , y , c1 ; while ( ~scanf ( "%d%d%d" , &n , &q , &c) ) { memset ( dp , 0 , sizeof(dp) ) ; for ( int i = 0 ; i < n ; i++ ) { scanf ( "%d%d%d" , &x , &y , &c1 ) ; dp[x][y][c1]++ ; } for ( int i = 1 ; i <= 100 ; i++ ) { for ( int j = 1 ; j <= 100 ; j++ ) { for ( int k = 0 ; k <= 10 ; k++ ) { dp[i][j][k] += dp[i-1][j][k]+dp[i][j-1][k]-dp[i-1][j-1][k] ; } } } int t , x1 , y1 , x2 , y2 ; while ( q-- ) { scanf ( "%d%d%d%d%d" , &t , &x1 , &y1 , &x2 , &y2 ) ; int sum = 0 ; for ( int i = 0 ; i <= c ; i++ ) { int s = dp[x2][y2][i] + dp[x1-1][y1-1][i] - dp[x1-1][y2][i] - dp[x2][y1-1][i] ; int l = ( t + i ) % ( c + 1 ) ; sum += s * l ; } printf ( "%d\n" , sum ) ; } } return 0;}

 

转载于:https://www.cnblogs.com/ccut-ry/p/7446958.html

你可能感兴趣的文章
商务部
查看>>
ASP.Net MVC开发基础学习笔记(5):区域、模板页与WebAPI初步
查看>>
python静态方法和类方法
查看>>
iOS实现地图半翻页效果--老代码备用参考
查看>>
走过电竞之路的程序员
查看>>
JQ 获取地址栏参数
查看>>
关于AFNetworking访问网络超时的设置
查看>>
让前端独立于后端进行开发,模拟数据生成器Mock.js
查看>>
微信公众平台开发—利用OAuth2.0获取微信用户基本信息
查看>>
golang遇到的win下读取txt字符乱码的问题
查看>>
Binary Search--二分查找
查看>>
《计算机图形学》2.1.6 三维观察设备 学习笔记
查看>>
QT在线
查看>>
以P2P网贷为例互联网金融产品如何利用大数据做风控?
查看>>
Polymer初探
查看>>
zprofiler三板斧解决cpu占用率过高问题(转载)
查看>>
深入浅出NIO Socket实现机制
查看>>
bzoj 1930: [Shoi2003]pacman 吃豆豆 [费用流]
查看>>
(数字IC)低功耗设计入门(三)——系统与架构级低功耗设计
查看>>
Dynamics CRM2016 新功能之从CRM APP中导出数据至EXCEL
查看>>